Сейчас мы будем рассматривать неравномерное движение – то есть движение, при котором абсолютная величина скорости меняется со временем. Оказывается, существует простая геометрическая интерпретация пути, пройденного телом при произвольном движении.
Начнём с равномерного движения. Пусть скорость тела постоянна и равна
Очевидно, что за промежуток времени
Давайте построим график зависимости скорости от времени. В данном случае это будет прямая, параллельная оси абсцисс (рис. 1).
Рис. 1. Путь при равномерном движении |
Нетрудно видеть, что пройденный путь равен площади прямоугольника, расположенного под графиком скорости. В самом деле, первый множитель
Теперь нам предстоит обобщить эту геометрическую интерпретацию на случай неравномерного движения.
Пусть скорость тела
Рис. 2. Неравномерное движение |
Дальше мы рассуждаем следующим образом.
1. Разобьём наш промежуток времени
2. Предположим, что на каждом таком отрезке
На рис. 3 показаны две ступенчатые аппроксимации. Ширина ступенек
Рис. 3. Ступенчатая аппроксимация |
Путь, пройденный за время
3. Теперь устремляем
Рис. 4. Путь при неравномерном движении |
В итоге мы приходим к нужному нам обобщению геометрической интерпретации пути, полученной выше для случая равномерного движения.
Аппроксимация – это приближённая замена достаточно сложного объекта более простой моделью, которую удобнее изучать. |
Геометрическая интерпретация пути.Путь, пройденный телом при любом движении, равен площади под графиком скорости на заданном промежутке времени.
Посмотрим, как работает эта геометрическая интерпретация в важном частном случае равноускоренного движения.
Задача. Тело, имеющее скорость
Решение. Зависимость скорости от времени в данном случае имеет вид:
График скорости – прямая, изображённая на рис. 5. Искомый путь есть площадь трапеции, расположенной под графиком скорости.
Рис. 5. Путь при равноускоренном движении |
Меньшее основание трапеции равно
Эту формулу можно переписать в более привычном виде:
Она, разумеется, вам хорошо известна из темы “Равноускоренное движение”.
Задача. График скорости тела является полуокружностью диаметра
Решение. Как вы знаете, площадь круга радиуса
Поэтому пройденный путь, вычисляемый как площадь полукруга, равен половине произведения
Рис. 6. К задаче |